Benha University
Faculty of Engineering- Shoubra
Eng. Mathematics & Physics Department
Qualifying Courses (Mathematics)

Final Term Exam

Date: 14 - 1 - 2015

Course: Linear Algebra EMM 402

10

40

20

10

10

30

10

20

20

10

Duration: 3 hours

 Answer All questions 	The exam consists of one page	• No. of questions: 5	Total Mark: 200

[1] (a)Determine the linearly independent and linearly dependent:

(i)
$$u = (2, 2), v = (1, 3)$$

(ii)
$$u = (2, 1, 2), v = (1, 2, 0), w = (3, 3, 2)$$

(b) If
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 4 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 0 & 3 \\ 1 & 3 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 3 & -1 \\ 1 & 5 & 1 \end{bmatrix}$

Find, if possible, A + B, $A + B^{t}$, A.B, $A.B^{t}$, A.C, |A| and |C|.

$$[2](a)\text{If } A = \begin{bmatrix} 2 & 6 \\ 2 & 3 \end{bmatrix}.$$

(i)Find the eigenvalues and the eigenvectors.

(ii) Find the eigenvalues of the matrices $B = f(A) = 2^A$ and $C = f(A) = A^4$

(b) Show that the eigenvalues of : $A = \begin{bmatrix} a & c \\ c & b \end{bmatrix}$ are real numbers, where a, b, c are real numbers.

[3] Write the following expressions in matrix form and determine the type:

(a)
$$P = 3x^2 + 4y^2 + 2z^2 + 2xy - 2xz + yz$$

(b)
$$P = 2xy + 4xz - 2yz - 3x^2 - 2y^2 - 2z^2$$

(c)
$$P = 2xy + 6xz - 2yz + 3x^2 + y^2 + z^2$$

[4](a)Write the Hessian matrix of: $f(x,y,z) = ye^{2x} + \cos^3 y + x^3 \sin z^5$.

(b) Show that the eigenvectors of the matrix $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ are orthogonal and linear independent.

(c) Find
$$f(A) = \frac{24}{A+I}$$
 where $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$

[5](a)Write the equations: $a_{11}x + a_{12}y + a_{13}z = b_1$, $a_{21}x + a_{22}y + a_{23}z = b_2$, $a_{31}x + a_{32}y + a_{33}z = b_3$ in matrix form and discuss the types of solutions.

Also, state two methods with their procedures for solving this linear system. (b)Determine the type of solution of the linear system:

$$2x - y + 3z = 2$$
, $x + 3y - 4z = 3$, $3x + 2y - z = 5$

Dr. Mohamed Eid

Good Luck